

Carbon Charge Residuals: Allocation

Options

Nathaniel Gilbraith

NYISO

IPPTF June 4, 2018, KCC, Rensselaer, NY

> NEW YORK INDEPENDENT SYSTEM OPERATOR

RAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Agenda

- Presentation Objectives
- Carbon residuals and example
- Market design first principles
- Residual allocation description and examples
 - Load Ratio Share
 - Cost Levelizing
 - Proportional Allocation
- Annual residual allocation examples for the NYCA

Presentation objective

- Summarize three approaches to allocation: Load Ratio Share, Cost Levelizing, and Proportional Allocation, with the latter two based on the carbon effect on each zone's LBMPs
- Illustrate how each approach may affect customer costs throughout the state
- Receive stakeholder feedback on carbon residual allocation approaches
- Does not discuss allocation by LSEs to customers, which would be under PSC jurisdiction

Allocation of Carbon Charge Residuals to Loads

- Charging suppliers for their carbon emissions would result in carbon charge residuals, to be allocated to loads
 - NYISO would allocate these residuals to load serving entities (LSEs) as an offset to their energy charges in weekly settlements
 - How NYISO allocates these residuals will affect the net costs customers pay throughout the state; the key question is how to allocate in relation to different zones' LBMP effects from carbon
 - Allocation would not affect revenues to generators, who would receive the LBMP including the carbon effect

How carbon residuals occur

Row	Parameter	<u>Eqn.</u>	Load	<u>Suppliers</u>
[1]	Energy (MWh; + is gen)		-100	100
[2]	LBMP, incl. carbon (\$/MWh)		\$35	\$35
[3]	Energy bill (\$; + is a payment)	[1] * [2]	-\$3,500	+\$3,500
[4]	$\rm CO_2$ emissions to serve load (tons)		n/a	25
[5]	CO ₂ price (\$/ton)		n/a	\$50
[6]	Residual to load & CO ₂ charge to gens (\$)	[4] * [5]	\$1,250	-\$1,250
[7]	Net energy rate (\$/MWh)	([3] + [6])/[1]	\$22.50	\$22.50
[8]	Net energy bill (\$)	[3] + [6]	-\$2,250	+\$2,250

 \rightarrow

Market Design First Principles

Mechanisms should be evaluated against at least two design objectives:

- Economic Efficiency: Align LBMPs with the marginal cost of serving load, to incentivize customers to reduce emissions when economic to do so (accounting for externalities).
 - Strictly speaking, this criterion might suggest not allocating any carbon residuals/funds to customers, or at least not in a way that relates to volume of consumption, so that they pay for the full social cost of marginal production.
 - But one can at least aim to signal the relatively high cost of consuming at times and places with higher marginal emissions.

• Equity of Cost Burden: Avoid major cost shifts among customers.

- Carbon charges will impact customers costs, and the allocation of carbon residuals/funds will moderate that impact
- Impacts and net impacts (net of allocated residuals/funds) will likely vary by zone
- Net impacts may also vary by customer class, and socio-economic status, but that is outside the scope of NYISO allocation among LSEs.

Load Ratio Share Allocation

Approach

- Return carbon charge residuals to all LSEs on a load ratio share basis
- Load Ratio Share Allocation results in LSEs receiving the same refunds on a \$/MWh basis

Efficiency and Equity Outcomes

- Equity: Could create equity concerns by causing greater differences in the net cost of carbon pricing across LSEs
- Efficiency: Would provide LSEs with a price signal more reflective of the carbon implications of their consumption

Example: Load Ratio Share Allocation

Load Ratio Share Allocation results in both LSEs receiving the same refunds on a \$/MWh basis, resulting in LSE B facing higher net carbon costs than LSE A

			LSE A [a]	LSE B [b]	Totals [c]
SE Description					
Location			Upstate	Downstate	
Load	MWh	[1]	10	15	2
MER	tons/MWh	[2]	0.3	0.4	
SE Gross Carbon Payments					
Carbon Charge	\$/ton	[3]	\$50	\$50	
Carbon Effect on LBMPs	\$/MWh	[4] = [2] x [3]	\$15.0	\$20.0	
Dollars	\$	[5] = [4] x [1]	\$150	\$300	\$450
SE Allocated Residuals					
Total Dollars to Allocate	\$	[6]			\$200
Share of Total Load	%	[7] = [1] / [1c]	40%	60%	
Allocated Refund	\$	[8] = [7] x [6]	\$80	\$120	\$200
Allocated Refund per MWh	\$/MWh	[9] = [8] / [1]	\$8.0	\$8.0	
SE Net Carbon Payments					
Net Carbon Payments	\$	[10] = [5] - [8]	\$70	\$180	\$250
Net Carbon Payments per MWh	\$/MWh	[11] = [10] / [1] = [4] - [9]	\$7.0	\$12.0	

DRAFT – FOR DISCUSSION PURPOSES ONLY

Note: Examples to not account for effect on REC and ZEC prices or any "dynamic effects" of carbon-induced changes

retirement, and demand described in the 2017 Brattle report. These effects will be included in the Issue Track 5 Consumer Impact.

in investment.

Cost Levelizing Allocation

Approach

- Refund collected carbon charges to compensate for zonal differences in the carbon component of the LBMP
- Zones with the highest carbon component of LBMPs would be allocated the most until differences are levelized

Efficiency and Equity Outcomes

- Equity: Most equitable of three approaches (likely results in all LSEs paying the same net costs of carbon pricing)
- Efficiency: Would eliminate the differential price signal to reduce consumption (and emissions) more in zones with higher MERs

Example: Cost Levelizing Allocation

Cost Levelizing Allocation results in more residuals allocated to LSE B, equalizing net carbon payments across LSE A and LSE B.

			LSE A [a]	LSE B [b]	Totals [c]
E Description					
Location			Upstate	Downstate	
Load	MWh	[1]	10	15	25
MER	tons/MWh	[2]	0.3	0.4	
E Gross Carbon Payments					
Carbon Charge	\$/ton	[3]	\$50	\$50	
Carbon Effect on LBMPs	\$/MWh	[4] = [2] x [3]	\$15.0	\$20.0	
Dollars	\$	[5] = [4] x [1]	\$150	\$300	\$450
E Allocated Residuals					
Total Dollars to Allocate	\$	[6]			\$20
Allocation to Levelize Net Payments	\$	[7] = ([4b] - [4a]) x [1b]		\$75	
Remaining Carbon Charges	\$	[8] = [6] - [7]			\$12
Allocation to Further Reduce Net Payments	\$	[9] = [8] x [1] / ([1c])	\$50	\$75	
Allocated Refund	\$	[10] = [7] + [9]	\$50	\$150	\$20
Allocated Refund per MWh	\$/MWh	[11] = [10] / [1]	\$5.0	\$10.0	
E Net Carbon Payments					
Net Carbon Payments	\$	[12] = [5] - [10]	\$100	\$150	\$25
Net Carbon Payments per MWh	\$/MWh	[13] = [12] / [1] = [4] - [11]	\$10.0	\$10.0	
	DRAFT – F	OR DISCUSSION PURPO	SES ONLY		

Note: Examples to not account for effect on REC and ZEC prices or any "dynamic effects" of carbon-induced changes in investment, retirement, and demand described in the 2017 Brattle report. These effects will be included in the Issue Track 5 Consumer Impact.

. . .

Proportional Allocation

Approach

 Return carbon charge residuals to all LSEs based on the proportional effect carbon prices have on their gross payments for energy (i.e., the product of the carbon effect on applicable zonal LBMPs and their MWh of load)

Efficiency and Equity Outcomes

- Would return more revenues to LSEs that face higher \$/MWh cost impacts, but would not go so far as levelizing these cost impacts
- Provides some balance between two competing objectives economic efficiency and equity of cost burden, as this approach would maintain some of the differential price signals to reduce consumption (and emissions) more in zones with higher marginal emission rates

Example: Proportional Allocation

Proportional Allocation allocates more residuals to LSE B than LSE A, but refunds only partially offset LSE B's higher gross costs

			LSE A [a]	LSE B [b]	Totals [c]
SE Description					
Location			Upstate	Downstate	
Load	MWh	[1]	10	15	25
MER	tons/MWh	[2]	0.3	0.4	
SE Gross Carbon Payments					
Carbon Charge	\$/ton	[3]	\$50	\$50	
Carbon Effect on LBMPs	\$/MWh	[4] = [2] x [3]	\$15.0	\$20.0	
Dollars	\$	[5] = [4] x [1]	\$150	\$300	\$450
SE Allocated Residuals					
Total Dollars to Allocate	\$	[6]			\$200
Share of Gross Carbon Payments	%	[7] = [5] / [5c]	33%	67%	
Allocated Refund	\$	[8] = [7] x [6]	\$67	\$133	\$200
Allocated Refund per MWh	\$/MWh	[9] = [8] / [1]	\$6.7	\$8.9	
SE Net Carbon Payments					
Net Carbon Payments	\$	[10] = [5] - [8]	\$83	\$167	\$250
Net Carbon Payments per MWh	\$/MWh	[11] = [10] / [1] = [4] - [9]	\$8.3	\$11.1	

DRAFT – FOR DISCUSSION PURPOSES ONLY

Note: Examples to not account for effect on REC and ZEC prices or any "dynamic effects" of carbon-induced changes in investment, retirement, and demand described in the 2017 Brattle report. These effects will be included in the Issue Track 5 Consumer Impact.

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Indicative Findings for 2025

- The prior slides illustrate the effects of allocation approach decisions via illustrative examples
- The following slides provide indicative findings for 2025 and a sensitivity, leveraging analysis from the 2017 Report
 - These slides calculate returns using total annual carbon charge residuals
 - To the extent that residuals are returned weekly, the same methods could still apply
 - However, weeks with greater residuals (e.g., periods with higher than average carbon emissions) would realize greater load credits than weeks with fewer residuals (e.g., periods with lower than average carbon emissions)
- Through Issue Track 5, the IPPTF will re-estimate allocation implications for LSE bills under all three approaches. These estimates will account for effect on REC and ZEC prices or any "dynamic effects" of carbon-induced changes in investment, retirement, and demand described

- Gross Energy Payments of ~\$11 billion before carbon charge applied
 - Upstate: \$3 billion (5.78
 \$/kWh)
 - Downstate: \$8 billion (7.93
 \$kWh)
- Unchanged by allocation approach

		Load Ratio Share	Proportional	Levelizing			
LSE Gross Energy Payments Before Carbon Adder							
Upstate	(\$ million)	\$3,089	\$3,089	\$3,089			
Downstate	(\$ million)	\$8,189	\$8,189	\$8,189			
NYCA Total	(\$ million)	\$11,278	\$11,278	\$11,278			
Upstate	(¢/kWh)	5.78	5.78	5.78			
Downstate	(¢/kWh)	7.93	7.93	7.93			

Sources and Notes:

Examples derived from findings of 2025 analysis in 2017 Brattle Report, Section VII.

Assumptions: MERs: 0.42 tons/MWh Upstate, 0.48 Downstate, Total Emissions: 37 million tons. Total carbon charges collected at \$40/ton: \$1,477 million

- Gross carbon payments calculated as Load-wtd average Marginal Emission Rate x Load
- NYCA-wide total payments of \$2,940 million
 - \$924 million Upstate (1.73 ¢/kWh)
 - \$2,015 million Downstate (1.95 ¢/kWh)
- Unchanged by allocation approach

		Load Ratio Share	Proportional	Levelizing
SE Gross Energy	Payments Befo	re Carbon Adder		
Upstate	(\$ million)	\$3,089	\$3,089	\$3,089
Downstate	(\$ million)	\$8,189	\$8,189	\$8,189
NYCA Total	(\$ million)	\$11,278	\$11,278	\$11,278
Upstate	(¢/kWh)	5.78	5.78	5.78
Downstate	(¢/kWh)	7.93	7.93	7.93
E Gross Carbor	Payments			
Upstate	(\$ million)	\$924	\$924	\$924
Downstate	(\$ million)	\$2,015	\$2,015	\$2,015
NYCA Total	(\$ million)	\$2,940	\$2,940	\$2,940
Upstate	(¢/kWh)	1.73	1.73	1.73
Downstate	(¢/kWh)	1.95	1.95	1.95

Sources and Notes:

Examples derived from findings of 2025 analysis in 2017 Brattle Report, Section VII.

Assumptions: MERs: 0.42 tons/MWh Upstate, 0.48 Downstate, Total Emissions: 37 million tons. Total carbon charges collected at \$40/ton: \$1,477 million

- Total carbon residuals of \$1,477 million to be allocated to NYCA load
- Upstate/Downstate allocation varies based on allocation approach
 - Load Ratio Share: Equal allocation of 0.94 ¢/kWh
 - Proportional: Allocation of 0.87 ¢/kWh
 Upstate, 0.98 ¢/kWh Downstate
 - Levelized: Allocation of 0.80 ¢/kWh
 Upstate, 1.02 ¢/kWh Downstate
- Choice of approach shifts Upstate vs. Downstate allocation by ~\$80 million

	Loa	ad Ratio Share	Proportional	Levelizing
E Gross Energy	Payments Before Car	bon Adder		
Upstate	(\$ million)	\$3,089	\$3,089	\$3,089
Downstate	(\$ million)	\$8,189	\$8,189	\$8,189
NYCA Total	(\$ million)	\$11,278	\$11,278	\$11,278
Upstate	(¢/kWh)	5.78	5.78	5.78
Downstate	(¢/kWh)	7.93	7.93	7.93
E Gross Carbon	Payments			
Upstate	(\$ million)	\$924	\$924	\$924
Downstate	(\$ million)	\$2,015	\$2,015	\$2,015
NYCA Total	(\$ million)	\$2,940	\$2,940	\$2,940
Upstate	(¢/kWh)	1.73	1.73	1.73
Downstate	(¢/kWh)	1.95	1.95	1.95
E Allocated Res	siduals			
Upstate	(\$ million)	\$504	\$465	\$426
Downstate	(\$ million)	\$973	\$1,013	\$1,051
NYCA Total	(\$ million)	\$1.477	\$1,477	\$1.477
Upstate	(¢/kWh)	0.94	0.87	0.80
Downstate	(¢/kWh)	0.94	0.98	1.02
			1	
Equal & (k)M/b		Equal on	a proportional	Net carbon
	Equal ¢/kWh	basis: \$465 / \$924 = 50%		payments equal
				¢/kWh basis (se
\$1.013 / \$2.01		\$1,013 /	\$2,015 = 50%	next slide)

Sources and Notes:

Examples derived from findings of 2025 analysis in 2017 Brattle Report, Section VII.

Assumptions: MERs: 0.42 tons/MWh Upstate, 0.48 Downstate, Total Emissions: 37 million tons. Total carbon charges collected at \$40/ton: \$1,477 million

- Total net carbon payments of \$1,463 across NYCA
- Upstate/Downstate net payments vary based on allocation approach
 - Load Ratio Share: Net payments of 0.79
 \$\chi_kWh Upstate, 1.01 \$\chi_kWh Downstate
 - Proportional: Net payments of 0.86
 \$\mathcal{k}\$Wh Upstate, 0.97 \$\mathcal{k}\$Wh Downstate
 - Levelized: Equal net payments of 0.93
 \$\mathcal{k}\$ kWh Upstate/Downstate
- Choice of approach shifts Upstate vs. Downstate net payments by ~\$80 million

		Load Ratio Share	Proportional	Levelizing
E Gross Energy	Payments Befo	re Carbon Adder		
Upstate	(\$ million)	\$3,089	\$3,089	\$3,089
Downstate	(\$ million)	\$8,189	\$8,189	\$8,189
NYCA Total	(\$ million)	\$11,278	\$11,278	\$11,278
Upstate	(¢/kWh)	5.78	5.78	5.78
Downstate	(¢/kWh)	7.93	7.93	7.93
E Gross Carbor	Payments			
Upstate	(\$ million)	\$924	\$924	\$924
Downstate	(\$ million)	\$2,015	\$2,015	\$2,015
NYCA Total	(\$ million)	\$2,940	\$2,940	\$2,940
Upstate	(¢/kWh)	1.73	1.73	1.73
Downstate	(¢/kWh)	1.95	1.95	1.95
E Allocated Res	siduals			
Upstate	(\$ million)	\$504	\$465	\$426
Downstate	(\$ million)	\$973	\$1,013	\$1,051
NYCA Total	(\$ million)	\$1,477	\$1,477	\$1,477
Upstate	(¢/kWh)	0.94	0.87	0.80
Downstate	(¢/kWh)	0.94	0.98	1.02
E Net Carbon P	ayments (exclue	ding offsets from REC:	s/ZECs and dynam	ic effects)
Upstate	(\$ million)	\$421	\$460	\$499
Downstate	(\$ million)	\$1,042	\$1,003	\$964
NYCA Total	(\$ million)	\$1,463	\$1,463	\$1,452
Upstate	(¢/kWh)	0.79	0.86	0.93
Downstate	(¢/kWh)	1.01	0.97	0.93

Net carbon payments equal on a ¢/kWh basis

Sources and Notes:

Examples derived from findings of 2025 analysis in 2017 Brattle Report, Section VII.

Assumptions: MERs: 0.42 tons/MWh Upstate, 0.48 Downstate, Total Emissions: 37 million tons. Total carbon charges collected at \$40/ton: \$1,477 million

- Total energy payments after carbon payments and residuals allocation will depend on allocation approach:
 - Upstate: Between 6.57 and 6.71 ¢/kWh, an increase of 14% 16%
 - Downstate: Between 8.86 and 8.93 ¢/kWh, an increase of 12% 13%
- This discussion focuses solely on allocation and LBMP effects. Total bill impacts would be less than shown if accounting for lower REC/ZEC prices and "dynamic effects" of carbon-induced changes in investment, retirement, and demand

Sources and Notes:

Examples derived from findings of 2025 analysis in <u>2017 Brattle Report</u>, Section VII.

Assumptions: MERs: 0.42 tons/MWh Upstate, 0.48 Downstate, Total Emissions: 37 million tons. Total carbon charges collected at \$40/ton: \$1,477 million

+++

Allocation Comparison: Low Upstate MER Comparison

- Approaches compared in alternative scenario with lower Upstate MERs
 - E.g. due to "bottled" upstate renewables
 - Assumed Upstate MER of 0.35 tons/MWh (vs 0.42 in previous example)
 - Brattle report suggests avg. upstate MERs could fall to 0.35 tons/MWh before renewables locate Downstate or new transmission becomes economical
- Choice of approach shifts Upstate vs. Downstate residual allocation by ~\$190 million (vs \$80 million in 2025 Base Case)
- This discussion focuses solely on allocation and LBMP effects. Total bill impacts would be less than shown if accounting for lower REC/ZEC prices and "dynamic effects"

Sources and Notes:

charges collected at \$40/ton: \$1,477 million

Examples derived from findings of 2025 analysis in <u>2017 Brattle Report</u>, Section VII. Assumptions: MERs: 0.42 tons/MWh Upstate, 0.48 Downstate, Total Emissions: 37 million tons. Total carbon

		Load Ratio Share	Proportional	Levelizing
SE Gross Energy	Payments Befo	re Carbon Adder		
Upstate	(\$ million)	\$3,089	\$3,089	\$3,089
Downstate	(\$ million)	\$8,189	\$8,189	\$8,189
NYCA Total	(\$ million)	\$11,278	\$11,278	\$11,278
Upstate	(¢/kWh)	5.78	5.78	5.78
Downstate	(¢/kWh)	7.93	7.93	7.93
SE Gross Carbor	n Payments			
Upstate	(\$ million)	\$924	\$924	\$924
Downstate	(\$ million)	\$2,015	\$2,015	\$2,015
NYCA Total	(\$ million)	\$2,940	\$2,940	\$2,940
Upstate	(¢/kWh)	1.73	1.73	1.73
Downstate	(¢/kWh)	1.95	1.95	1.95
SE Allocated Res	siduals			
Upstate	(\$ million)	\$504	\$465	\$426
Downstate	(\$ million)	\$973	\$1,013	\$1,051
NYCA Total	(\$ million)	\$1,477	\$1,477	\$1,477
Upstate	(¢/kWh)	0.94	0.87	0.80
Downstate	(¢/kWh)	0.94	0.98	1.02
SE Net Carbon P	ayments (exclue	ding offsets from REC	s/ZECs and dynam	ic effects)
Upstate	(\$ million)	\$421	\$460	\$499
Downstate	(\$ million)	\$1,042	\$1,003	\$964
NYCA Total	(\$ million)	\$1,463	\$1,463	\$1,463
Upstate	(¢/kWh)	0.79	0.86	0.93
Downstate	(¢/kWh)	1.01	0.97	0.93
crease in LSEs'	Total Energy Pa	yments from Carbon	Payments Minus Al	llocated Residual
Upstate	(\$ million)	\$3,510	\$3,549	\$3,588
Downstate	(\$ million)	\$9,231	\$9,192	\$9,153
NYCA Total	(\$ million)	\$12,741	\$12,741	\$12,741
Upstate	(¢/kWh)	6.57	6.64	6.71
Downstate	(¢/kWh)	8.93	8.90	8.86

Choice of allocation approach

- The Straw Proposal proposes Cost Levelizing Allocation
 - The NYISO continues to propose the Cost Levelizing Allocation
 - Produces the most similar cost burden in terms of \$/MWh of carbon charge
 - Limits the additional differential price signal from carbon adder to reduce consumption
 - Higher MER zones would not necessarily see an incentive to reduce consumption relative to lower MER zones
- Should LSE allocated residuals be allowed to exceed that LSE's gross carbon payments?
- What criteria are stakeholders looking for in terms of equity vs. cost burden?

Questions?

We are here to help. Let us know if we can add anything.

Feedback?

Questions and/or comments can be sent to <u>IPP_feedback@nyiso.com</u>

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

